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Abstract: 

Once a product is developed and its manufacture begins, its level of 

excellence immediately starts decreasing due to other competitive 

products on the market. Its life on the market can be prolonged by 

continual product improvements. A longer product lifetime also 

increases its profitability, because the development of a new family of 

products is associated with considerable costs. The paper presents 

product re-engineering using an example of a vacuum cleaner motor 

and its positioning in the product development cycle. The development 

of vacuum cleaner motors (motor and turbine assembly) is progressing 

in the direction of increasing the number of revolutions and decreasing 

their mass and volume. The performed analysis of vacuum cleaner 

motor construction indicated several possibilities for increasing the 

number of revolutions. The basic problem concerns the influence of 

individual components on critical speed. The paper assesses the 

applicability of individual methods for the analysis of natural 

frequencies; the results are summarized in the form of engineering 

design rules for vacuum cleaner motors. The analysis was performed 

for an example from current manufacturing practice. Achieving 

high quality standards and 100% defect-free deliverables is becoming 

a trend among manufacturers of household appliances. In that respect, 

thorough and reliable end-tests represent an important step towards 

this goal. This paper deals with the design of end-test procedures for 

vacuum cleaner motors based on sound analysis. It is well known that 

sound carries important information about the condition of contact 

surfaces in rotating parts. The paper aims first to provide a thorough 

analysis of sound sources within the motor. Second, by using simple 

yet effective signal processing tools, it is shown that with sound 

analysis alone it is possible to clearly distinguish fault-free motors 

from those with mechanical faults. Moreover, the proposed algorithm 

exhibits a certain isolation capability, i.e., it is able to distinguish three 

clusters of faults. Finally, a summary of experimental results obtained 

on a sample of 75 motors is provided. 
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1. INTRODUCTION 

 
The manufacturers of vacuum cleaner motors tend to purchase 

(almost) 100% fault-free devices by lowest prices. This demands for 

well-organised process of quality assurance during the manufacturing 

cycle. This paper addresses a family of vacuum cleaner motors 

manufactured by company Domel, which is a recognised 

Europeanproducer. The quality assurance in Domel consists of two 

segments. Firstly, several standard automated tests are performed on 

most critical components during assembly (e.g. rotor balance, high- 

voltage test etc). As the matter of fact, those tests are able to reveal 

defects on the level of components only. That means that some errors 

occurring during assembly process might become visible not earlier 

than on the end product. There fore a thorough and in-depth analysis 

of the condition of the end product is very important. Currently the end 

 

 

test entails only manual measurements of vibrations, sound inspection 

and visual checks. The rest of the quality assurance process relies on a 

statistical procedure for quality control of finished series. This segment 

takes a rather high amount of work and, consequently, costs. Therefore, 

it is hoped that a way to reduce costs is to employ thorough end tests 

able not only to reveal defective motors but also to isolate the root 

cause. The operators will have the opportunity to take immediate 

corrective actions on assembly line. 

1. 2 Problem Definition 

The primary challenge in vacuum cleaner fault detection is accurately 

classifying diverse vibration patterns associated with different 

mechanical faults. Traditional approaches, such as spectral analysis 

and rule-based systems, require extensive domain expertise and 

struggle with dynamic operational conditions. Additionally, existing 

machine learning models often rely on handcrafted features, which 

may not generalize well across different vacuum cleaner models or 

fault types. Therefore, there is a need for an intelligent, adaptive 

system that can classify vibration signals with high accuracy and 

minimal human intervention. 

1. 3 Research Motivation 

With the increasing demand for smart appliances and automated 

maintenance solutions, developing an efficient fault classification 

model is crucial. A hybrid deep learning approach that integrates CNNs 

and FFNN can overcome the limitations of traditional methods by 

leveraging spatial and temporal features in vibration signals. CNNs can 

effectively extract meaningful patterns from spectrogram 

representations, while FFNN can capture temporal dependencies, 

making them well-suited for sequential data like vibration signals. The 

motivation behind this research is to create a scalable and generalizable 

model that enhances fault detection, reduces unplanned maintenance, 

and improves overall product reliability. 

1. 4 Significance 

The proposed hybrid deep learning model offers several advantages: 

• Early Fault Detection: Enables proactive maintenance by 
identifying faults at an early stage, reducing downtime and repair 
costs. 

• Automation & Scalability: Eliminates the need for manual 
feature extraction and can be applied to different vacuum cleaner 
models and mechanical systems. 

• Real-time Monitoring: Supports continuous health assessment, 
improving user experience and operational efficiency. 

1. 5 Applications 

The proposed model has broad applications, including: 

• Smart Home Appliances: Automated fault detection in robotic 
vacuum cleaners and household appliances. 
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• Industrial Equipment Monitoring: Predictive maintenance for 
industrial vacuum systems and other machinery. 

• Consumer Electronics: Integration into IoT-based maintenance 
systems for real-time performance tracking. 

• Automotive & Aerospace: Vibration analysis for diagnosing 
mechanical faults in engines, motors, and rotating components. 

2. LITERATURE SURVEY 

In the case of a compound fault diagnosis of rotating machinery, when 

two failures with unequal severity occur in distinct parts of the system, 

the detection of a minor fault is a complicated and challenging task. In 

this case, the minor fault is overshadowed by the more severe one, and 

the characteristics of the compound fault are prone to the more severe 

one. Generally, the proposed methods in the literature consider 

compound failure as an individual fault type and unrelated to the 

corresponding single faults, either at the different locations of a 

sensitive component or in two separate parts, such as the bearing and 

gear, with approximately the same fault severity [1]. Engineering has 

many necessary fields, and Structural Health Monitoring (SHM) is one 

of the most important of them. Sometimes in industrial environments, 

it is difficult and even impossible to collect data containing different 

real damages. Therefore, the problem of data acquisition represents a 

primary challenge in designing damage detection systems. The 

application of digital twin methods based on simulated models and/or 

Machine Learning (ML) models is a practical way to solve this 

problem [2]. 

Track geometry is one of the critical indicators of railway tracks’ 

condition which requires continuous monitoring and maintenance over 

time. In this paper, a novel artificial intelligence (AI) based framework 

is proposed for railway track geometry inspection using vibration data 

collected from a dedicated measuring high-speed train. This AI-based 

anomaly track detection approach consists of two main stages [3]. The 

artificial intelligence (AI) technologies, such as meta-heuristic 

computing and deep learning, have provides solid technical support for 

structural health monitoring (SHM) of offshore jackets. In this paper, 

a physics-enhanced AI method based on the parametric damage 

identification is developed for SHM of the offshore jacket structures. 

In this new method, a hybrid kernel function-based kernel extreme 

learning machine (HKELM) is proposed to construct an AI structure 

to enhance the SHM detection capacity on the structural modal 

parameters extracted by the parametric damage identification 

technique [4]. 

Structural health monitoring of mechanical systems is essential to 

avoid their catastrophic failure. In this article, an effective deep neural 

network is developed for extracting the damage-sensitive features 

from frequency data of vibration signals to damage detection of 

mechanical systems in the presence of the uncertainties such as 

modeling errors, measurement errors, and environmental noises. For 

this purpose, the finite element method is used to analyze a mechanical 

system (finite element model) [5]. 

Monitoring health condition of offshore jacket platforms is crucial to 

prevent unexpected structural damages, where a prevailing challenge 

involves translating available feature information into structural 

damage patterns. Although the artificial neural network (ANN) models 

are popular in addressing this challenge, they often fail to capture the 

temporal correlations between the feature information and the damage 

patterns, which reduce their capability for discovering the laws 

governing the structural damage detection [6]. Monitoring structural 

damage is critical for preserving the service life of engineering 

systems. In varying operational environments, the working loads are 

changing all the time and they are typically unknown; in such 

environments, access to damage data is difficult and sometimes even 

impossible, and generally, intact data of the system is available. From 

this standpoint, this study aims to propose a novel vibration-based 

method for damage detection of real systems using Dictionary 

Learning (DL) based on a FE model and real intact state under different 

uncertainties such as varying working loads [7]. 

At present, traditional subsea pipeline structural health monitoring 

(SHM) uses the sonar equipment, which needs to post-process the 

obtained data. Then the sonar images can be obtained. Moreover, 

traditional SHM needs staff to interpret the results of the sonar images. 

Such results can be subject to manual interference, and monitoring 

efficiency and accuracy cannot be guaranteed either. In view of the 

above problems, this paper proposed an ensemble method for real-time 

automatic monitoring, evaluation and positioning of exposed subsea 

pipelines based on 3D real-time sonar system [8]. Advancement in 

measurement techniques has dramatically contributed to the 

development of the modern manufacturing industry. As the primary 

fault causing unplanned downtime of mechanical equipment, gearbox 

compound faults are usually coupled by single faults with unequal 

severity and are difficult to obtain. In industrial scenarios, monitoring 

data for extreme operating conditions is not available in advance, and 

labeling samples is time-consuming and costly [9]. 

Intelligent fault diagnosis techniques have replaced time-consuming 

and unreliable human analysis, increasing the efficiency of fault 

diagnosis. Deep learning models can improve the accuracy of 

intelligent fault diagnosis with the help of their multilayer nonlinear 

mapping ability. This paper proposes a novel method named Deep 

Convolutional Neural Networks with Wide First-layer Kernels 

(WDCNN) [10]. Emotion is considered to be critical for the actual 

interpretation of actions and relationships. Recognizing emotions from 

EEG signals is also becoming an important computer-aided method for 

diagnosing emotional disorders in neurology and psychiatry. Another 

advantage of this approach is recognizing emotions without clinical 

and medical examination, which plays a major role in completing the 

Brain-Computer Interface (BCI) structure. Emotions recognition 

ability, without traditional utilization strategies such as self-assessment 

tests, is of paramount importance [11]. 

Random-vibration-based statistical time series structural health 

monitoring methods utilize small-scale, compact, and data-based, time 

series stochastic representations of the structural dynamics for damage 

diagnosis. In this study, a comprehensive and critical assessment of the 

diagnostic performance of five prominent response-only methods is 

presented based on incipient, ‘minor’ to ‘mild’, damages on a lab-scale 

wind turbine jacket structure [12]. Railway bridges exposed to extreme 

environmental conditions can gradually lose their effective cross- 

section at critical locations and cause catastrophic failure. This paper 

has proposed a practical vibration-based deep learning approach for 

damage classification of various extents and degrees of cross section 

losses due to damages like corrosion in operational railway bridges 

using vibration-based Convolutional Neural Networks (CNN)s [13]. 

Civil engineering structures inevitably suffer from nonstationary 

ambient excitations in practice, which make conventional damage 

identification methods relying on the stationary assumption 

ineffective. This study presents a novel method based on 

unthresholded assembled recurrence distance matrix (UARDM) and 

multi-label convolutional neural network (CNN) for structural damage 

identification under nonstationary excitations [14]. Structural damage 

detection is crucial for ensuring the safety and reliability of civil 

infrastructure. 

3. PROPOSED METHODOLOGY 

Step 1: Health Dataset 

The first step involves acquiring the health dataset, which contains 

vibration data collected from vacuum cleaner motors. This dataset 

includes several numerical features representing vibration 

characteristics (label as a1, a2, a3, a4), along with a "label" column 

that indicates the motor's health status (either "Normal" or "Faulty"). 

The dataset is read into the system and prepared for analysis to ensure 
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that the subsequent machine learning processes are based on quality 

data. 

Step 2: Data Preprocessing 

Once the dataset is loaded, preprocessing tasks are performed. The data 

is examined for any missing or null values, and strategies are 

implemented to handle them. For example, missing values may be 

filled or removed based on their distribution and importance. The 

dataset is then standardized, ensuring all features are on the same scale. 

Label encoding is applied to the categorical "label" column, 

transforming it into numeric values. Data splitting follows, dividing 

the dataset into training and testing sets to evaluate model performance 

effectively. 

Step 3: EDA Plots 

Exploratory Data Analysis (EDA) is performed to gain insights into 

the structure of the data. Various graphs, such as histograms, scatter 

plots, and correlation heatmaps, are generated. These plots reveal 

trends and relationships between the features and their distribution 

within the classes (Normal and Faulty). EDA helps uncover important 

patterns in the data, such as which features most significantly influence 

the classification of motor health, and it guides decisions for feature 

selection and model optimization. 

Step 4: Existing SVM Classifier (Algorithm) 

The existing classification model used in this project is the Support 

Vector Machine (SVM). SVM is a supervised machine learning 

algorithm that works by finding the optimal hyperplane that best 

separates the different classes in the feature space. It is particularly 

useful for classification tasks where the classes are not linearly 

separable. In this project, the SVM classifier is trained on the 

preprocessed dataset and tested on the held-out test data to evaluate its 

ability to classify the motor health status. The SVM is trained using a 

Radial Basis Function (RBF) kernel, which helps handle complex, 

non-linear relationships in the feature space. Performance metrics such 

as accuracy, precision, recall, and F-score are used to assess the 

model's effectiveness. 

Step 5: Proposed DNN Classifier (Algorithm) 

The proposed classifier for this project is the Deep Neural Network 

(DNN), which is a type of artificial neural network with multiple layers 

of nodes. The DNN architecture includes an input layer, one or more 

hidden layers, and an output layer. In this model, the hidden layers are 

fully connected layers with ReLU activation functions, and dropout 

layers are used to prevent overfitting. The output layer uses a softmax 

activation function to classify the data into one of the two classes: 

"Normal" or "Faulty." The DNN model is trained on the dataset, and 

its performance is evaluated based on metrics such as accuracy, 

precision, recall, and F-score. The DNN classifier is expected to 

outperform traditional models like SVM due to its ability to learn 

complex patterns in the data. 

Step 6: Performance Comparison Graph 

After training both the SVM and DNN models, their performance is 

compared through a graphical representation. A bar chart or line graph 

is used to display the key performance metrics (accuracy, precision, 

recall, F-score) for both models. The graph clearly shows the superior 

performance of the DNN model over the SVM model, with 

significantly higher accuracy and other metrics, which confirms the 

DNN's ability to better classify motor health from vibration data. This 

comparison helps validate the choice of DNN as the proposed model 

for this project. 

Step 7: Prediction of Output from Test Images with DNN 

Algorithm. 

Finally, the trained DNN model is applied to predict the motor health 

status of unseen test data. The model takes in vibration features from 

the test images and outputs predictions indicating whether each motor 

is "Normal" or "Faulty." The results of these predictions are then 

analyzed and compared with the actual test labels to assess the model's 

generalization ability. This step verifies the DNN model's effectiveness 

in real-world applications, ensuring that it can accurately classify 

motor health based on vibration patterns. 

 

 

Fig 4.: Proposed system Block Diagram 

4.1 Work Flow 

Data Preprocessing 

Data preprocessing is a crucial step in machine learning that ensures 

the dataset is clean, structured, and ready for training. Since the project 

involves classifying vacuum cleaner motor vibration patterns, raw 

sensor data must be transformed into a usable format. The key steps in 

data preprocessing include: 

• Handling Missing Values – The dataset is checked for null 

values using .isnull().sum(). If any missing values are found, they 

are either removed or replaced using mean, median, or mode 

imputation to maintain dataset integrity. 

• Feature Scaling and Normalization – Vibration and sound data 

often have varying ranges. Standardization techniques such as Z- 

score normalization StandardScaler() are applied to ensure 

uniform scaling across all features. This helps deep learning 

models converge faster and perform better. 

• Encoding Categorical Variables – The motor health labels (e.g., 

"Normal" and "Faulty") are categorical and must be converted 

into numerical form using Label Encoder(). This allows machine 

learning algorithms to process them efficiently. 

• Data Transformation – Since the dataset contains vibration 

signals, transformations like Fourier Transform (FFT) and Mel 

Frequency Cepstral Coefficients (MFCC) are applied to extract 

frequency-domain features, making fault classification more 

accurate. 

• Noise Removal and Smoothing – Unwanted noise in the sensor 

data is filtered out using signal processing techniques such as low- 

pass filtering, ensuring that only relevant motor vibrations are 

analyzed. 

• Data Augmentation – To increase the dataset size and improve 

model generalization, techniques such as time shifting, amplitude 

scaling, and frequency masking are used to create slightly altered 

versions of existing signals. 

Data Splitting 

After preprocessing, the dataset is divided into training and testing sets 

to evaluate the model’s performance effectively. The splitting process 

follows these steps: 

• Defining the Target Variable and Features – The dataset is 

divided into input features (X) representing vibration and sound 

parameters and output labels (y) indicating motor health status. 

• Splitting into Training and Testing Sets – The dataset is split 

using train_test_split() with an 80:20 ratio. The training set (80%) 
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is used to teach the model, while the testing set (20%) is reserved 

for performance evaluation. 

• Ensuring Class Balance – If the dataset is imbalanced (one class 

having significantly more samples than another), techniques like 

oversampling (SMOTE) or undersampling are used to ensure 

equal representation of all classes. 

• Randomization for Generalization – A fixed random state 

(random_state=42) is used to ensure consistent and reproducible 

results across multiple runs. 

• Creating Validation Set (Optional) – In deep learning models 

like CNN, an additional validation set (usually 10–20% of the 

training data) is extracted to fine-tune hyperparameters and 

prevent overfitting. 

4.2 Model Building 

This section provides a detailed explanation of the Support Vector 

Machine (SVM) Classifier, used as an existing algorithm, and the Deep 

Neural Network (DNN) Classifier, proposed for improved 

classification accuracy. 

4.2.1 Existing Algorithm 

What is a Support Vector Machine (SVM) Classifier? 

A Support Vector Machine (SVM) is a supervised learning algorithm 

used for classification tasks. It works by finding the optimal 

hyperplane that best separates different classes in a high-dimensional 

space. The key idea behind SVM is maximizing the margin between 

data points of different categories to improve classification accuracy 

and generalization. 

How It Works 

1. Mapping Data into High-Dimensional Space: SVM transforms 

the input data into a higher-dimensional space to make 

classification easier, especially when the data is not linearly 

separable. 

2. Finding the Optimal Hyperplane: The algorithm identifies a 

decision boundary (hyperplane) that maximizes the margin 

between two or more classes. 

3. Support Vectors: Data points closest to the hyperplane, known 

as support vectors, play a crucial role in defining the boundary. 

4. Kernel Trick: When data is not linearly separable, SVM uses 

kernel functions (e.g., radial basis function, polynomial kernel) to 

project the data into a higher-dimensional space where it becomes 

linearly separable. 

5. Classification: Once the hyperplane is established, new data 

points are classified based on which side of the boundary they 

fall. 

Architecture of SVM Classifier 

• Input Layer: Receives feature vectors representing vibration 
patterns. 

• Kernel Function (if needed): Maps the input space into a higher- 
dimensional space. 

• Hyperplane Calculation: Determines the optimal separating 
boundary between classes. 

• Support Vectors: Identifies critical data points that define the 
boundary. 

• Output Layer: Classifies new inputs based on learned decision 
boundaries. 

Disadvantages of SVM 

• Computational Complexity: Training can be slow for large 
datasets. 

• Memory Intensive: Requires significant memory for high- 
dimensional data. 

• Sensitive to Noise: Outliers can impact the placement of the 
hyperplane. 

• Parameter Selection: Choosing the right kernel and tuning 
hyperparameters (C and gamma) can be challenging. 

4.3.2 Proposed Algorithm 

What is a Deep Neural Network (DNN) Classifier? 

A Deep Neural Network (DNN) is a type of artificial neural network 

with multiple hidden layers designed to capture complex patterns in 

data. It is well-suited for tasks like vibration pattern classification, 

where relationships between features are highly nonlinear. DNNs use 

multiple layers of neurons, each applying transformations to input data 

to extract meaningful features. 

How It Works 

1. Input Layer: Takes in raw vibration data or pre-processed 

features. 

2. Hidden Layers: Consist of multiple layers with activation 

functions (such as ReLU) that transform the data through 

weighted connections. 

3. Forward Propagation: The input data is passed through the 

network, with each neuron computing a weighted sum of its 

inputs, applying an activation function, and passing it to the next 

layer. 

4. Backpropagation: The network adjusts its weights using the 

gradient descent algorithm to minimize classification error. 

5. Optimization: The model is trained with optimization techniques 

like Adam or SGD to improve classification performance. 

6. Output Layer: Produces the final classification of vibration 

patterns (e.g., "Normal" or "Faulty"). 

Architecture of DNN Classifier 

• Input Layer: Takes in numerical features extracted from 
vibration signals. 

• Multiple Hidden Layers: Contains dense layers with ReLU 

activation, allowing the network to capture complex patterns. 

• Dropout Layers: Prevent overfitting by randomly deactivating 
some neurons during training. 

• Output Layer: Uses a softmax activation function to classify 
vibration patterns into distinct categories. 

Advantages of DNN 

• Captures Complex Patterns: Able to model nonlinear 
relationships in vibration data. 

• Automated Feature Extraction: Learns relevant features 
without manual selection. 

• Scalability: Performs well with large datasets. 

• Improved Accuracy: Outperforms traditional machine learning 
models in classification tasks. 



IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501 

Vol.15, Issue No 2, 2025 

 

 

 
 

855  

4. EXPERIMENTAL ANALYSIS 

The project follows a systematic approach to classify vacuum cleaner 

vibration patterns using a deep learning model. The implementation 

consists of multiple steps, starting from data collection to model 

evaluation, ensuring accurate classification of mechanical health 

conditions. 

Step 1: Energy Dataset Collection 

The dataset comprises vibration signals collected from vacuum cleaner 

motors under different operating conditions. These signals are 

recorded using high-precision sensors to capture variations in vibration 

patterns that indicate mechanical health issues. The data includes 

normal and faulty conditions, ensuring a diverse range of samples for 

model training. Each sample is labeled based on its health status to 

facilitate supervised learning. 

Step 2: Data Preprocessing and Splitting 

The collected dataset undergoes preprocessing to remove 

inconsistencies and prepare it for training. The preprocessing steps 

include: 

• Handling Missing Values: Any missing entries in the dataset are 
identified and addressed through imputation or removal. 

• Standardization: The feature values are normalized to ensure 
uniformity across the dataset, preventing scale variations from 
affecting model performance. 

• Encoding Labels: The categorical labels representing different 

mechanical conditions are converted into numerical format for 

model compatibility. 

• Splitting the Dataset: The dataset is divided into training and 
testing sets, with a typical split of 80% for training and 20% for 

testing. This ensures the model learns from a majority of the data 
while being evaluated on unseen samples. 

Step 3: Exploratory Data Analysis (EDA) and Visualization 

EDA is performed to understand the data distribution and relationships 

between features. Several visualization techniques are applied: 

• Histograms and Boxplots: Display the distribution of vibration 
amplitudes across different motor conditions. 

• Correlation Heatmaps: Identify dependencies between various 
features, helping in feature selection. 

• Scatter Plots: Show clusters of normal and faulty conditions, 
highlighting separation between categories. 

Step 4: Implementation of Existing Algorithm – Support Vector 

Machine (SVM) Classifier 

The Support Vector Machine (SVM) model is implemented as a 

baseline classifier to evaluate the dataset's complexity. 

• Kernel Selection: The radial basis function (RBF) kernel is used 
to project data into a higher-dimensional space for better 
separability. 

• Training Process: The model is trained on the pre-processed 
dataset using an optimal hyperplane that maximizes the margin 
between classes. 

• Evaluation Metrics: Accuracy, precision, recall, and F1-score 
are calculated to assess the model's effectiveness in classifying 
vibration patterns. 

Step 5: Implementation of Proposed Algorithm – Deep Neural 

Network (DNN) Classifier 

The Deep Neural Network (DNN) is implemented to improve 

classification accuracy and handle the nonlinear nature of vibration 

data. 

• Network Architecture: The model consists of an input layer, 
multiple hidden layers with ReLU activation, and an output layer 
with softmax activation for classification. 

• Dropout Layers: Introduced to prevent overfitting by randomly 
deactivating neurons during training. 

• Optimization Strategy: The Adam optimizer is used to adjust 
network weights efficiently, ensuring faster convergence. 

• Loss Function: Sparse categorical cross-entropy is employed to 
compute classification error and guide weight adjustments. 

Step 6: Performance Comparison and Visualization 

The performance of both models is compared using graphical 

representations. 

• Accuracy Comparison: A bar chart is used to visualize accuracy 
differences between SVM and DNN. 

• Confusion Matrix: Displays the classification errors and correct 
predictions for each model. 

• Precision-Recall Curve: Analyzes the model's ability to 
distinguish between normal and faulty conditions effectively. 

Step 7: Prediction on Test Data Using the Trained DNN Model 

The trained DNN model is used to classify unseen test samples. 

• Loading Test Data: A new dataset containing vibration patterns 
from unknown motor conditions is processed. 

• Model Prediction: The trained DNN model assigns a class label 
(normal or faulty) to each test sample. 

• Result Interpretation: The predicted outcomes are analyzed to 
verify the effectiveness of the model in real-world applications. 

7.2 Dataset Description 

The dataset consists of four numerical features (a1, a2, a3, a4) and one 

categorical target variable (label). Each row represents a recorded 

instance of vibration data from a vacuum cleaner motor under different 

operating conditions. The features capture essential parameters derived 

from vibration signals, which are crucial for detecting mechanical 

faults. 

• a1: Represents the first extracted feature from the vibration 
signal, possibly related to amplitude variations or frequency 
components. 

• a2: Captures another aspect of the vibration pattern, which 
contributes to understanding the stability and operational 

efficiency of the motor. 

• a3: Measures fluctuations in the vibration signal, helping in 
detecting anomalies that indicate potential faults. 

• a4: Reflects a combination of multiple signal characteristics, 

playing a vital role in distinguishing between normal and faulty 

conditions. 

• label: The categorical target variable indicating the motor's health 
status. 
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7.3 Result Description 

This figure illustrates the initial step of uploading the energy dataset, 

which contains the vibration signals from vacuum cleaner motors. The 

dataset includes various features (a1, a2, a3, a4) and the associated 

labels indicating motor health (normal or faulty). The figure visually 

represents the structure of the dataset and highlights the importance of 

correctly interpreting the data for subsequent analysis. Data analysis 

steps such as checking for missing values, exploring the distribution of 

feature values, and identifying any patterns or trends in the data are 

also depicted. 

 

 

 

Fig. 1: Upload of Energy Dataset and its Analysis 
 

 

 

 

Fig. 2: Data Preprocessing and EDA Plots of the Project 

The figure 2 showcases various exploratory data analysis (EDA) plots 

used to understand the dataset. It includes graphs such as histograms, 

scatter plots, and correlation heatmaps. These visualizations help 

reveal key insights, such as how the features (a1, a2, a3, a4) relate to 

each other and how the vibration patterns differ between normal and 

faulty conditions. The EDA phase allows for an in-depth understanding 

of the data, guiding decisions on feature engineering and model 

selection. 

 

 

 

Fig. 3: Performance Metrics of SVM Mode 

The Fig. 3 tells the performance metrics evaluates the Support Vector 

Machine (SVM) model on the vibration dataset. The accuracy of the 

SVM model is 52.15%, indicating that it performs moderately well in 

correctly classifying motor conditions. The precision of 74.51% 

highlights that when the model predicts a faulty motor, it is often 

correct. However, with a recall of 52.60%, it shows that the model 

misses several faulty motors. The F-score of 38.73% further 

emphasizes that while precision is relatively high, the model’s ability 

to balance both precision and recall is not optimal. 

 

 

 

 

Fig. 4: Performance Metrics and Regression Scatter Plot 

for SVM Classifier Model 

The figure 4 presents a scatter plot of the regression results from the 

SVM model. The plot visualizes the relationship between the actual 

and predicted values for motor health classification. The SVM’s 

performance metrics, such as accuracy, precision, recall, and F-score. 
 

Model Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

SVM model 52.15 74.5 52.59 38.73 

DNN Model 99.5 99.44 99.44 99.44 
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while the DNN model significantly outperforms it with an accuracy of 

99.5%. The precision for SVM is 74.5%, compared to 99.44% for 

DNN, indicating that the DNN is far more reliable in identifying 

positive instances. For recall, the SVM model reaches 52.59%, 

whereas the DNN model excels with 99.44%. The F1-score of the 

SVM is 38.73%, which is much lower than the DNN model’s 99.44%. 

These metrics highlight the superior performance of the DNN model 

over the SVM. 

5. CONCLUSION 

Conclusion: 

 

 

 

 

 

 

 

 

Fig. 5 Performance Metrics of DNN Model 

The Fig. 5, the Deep Neural Network (DNN) model significantly 

outperforms the SVM model, with an impressive accuracy of 99.45%. 

The precision, recall, and F-score for the DNN model are all at 99.45%, 

reflecting its exceptional ability to identify faulty motors and classify 

vibration patterns with high reliability. The DNN model exhibits nearly 

perfect classification performance across all metrics, indicating its 

superior handling of the vibration data compared to traditional 

machines. 
 

 

Fig. 6: Performance Metrics and Regression Scatter Plot for 

DNN Classifier Model 

 

Fig. 6, this figure illustrates the regression scatter plot for the DNN 

classifier. The plot shows the true versus predicted motor condition 

values, with the DNN model exhibiting a high degree of alignment 

between predicted and actual values. The performance metrics for the 

DNN model are also presented, which align closely with the perfect 

classification observed in the earlier metrics. This figure demonstrates 

 

 

the DNN model’s capability to make highly accurate predictions, 

confirming its efficiency in classifying vibration data. 

The table compares the performance metrics of the SVM model and 

the DNN model. The SVM model achieves an accuracy of 52.15%, 

The implementation of a Hybrid Deep Learning Model for classifying 

vacuum cleaner vibration patterns has demonstrated significant 

improvements in detecting mechanical health conditions. By 

leveraging deep neural networks, the system effectively differentiates 

between normal and faulty motors with high accuracy. The 

comparative analysis with traditional methods, such as Support Vector 

Machine (SVM), highlights the superiority of deep learning models in 

handling complex vibration data. The DNN classifier successfully 

learns intricate patterns, reducing misclassification errors and ensuring 

precise fault detection. The structured approach, including data 

preprocessing, exploratory data analysis, and performance evaluation, 

contributes to the reliability of the proposed model. This system 

enhances predictive maintenance capabilities, reducing unexpected 

failures and increasing the operational lifespan of vacuum cleaners. 
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